
ONNX-to-Hardware Design Flow for the
Generation of Adaptive Neural-Network

Accelerators on FPGAs
1st Federico Manca

Dipartimento di Ingegneria Elettrica ed Elettronica
Università degli Studi di Cagliari

Cagliari, Italy
f.manca58@studenti.unica.it

2nd Francesco Ratto
Dipartimento di Ingegneria Elettrica ed Elettronica

Università degli Studi di Cagliari
Cagliari, Italy

0000-0001-5756-5879

Abstract—Neural Networks (NNs) provide a solid and reliable
way of executing different types of applications, ranging from
speech recognition to medical diagnosis, speeding up onerous
and long workloads. The challenges involved in their implemen-
tation at the edge include providing diversity, flexibility, and
sustainability. That implies, for instance, supporting evolving
applications and algorithms energy-efficiently. Using hardware or
software accelerators can deliver fast and efficient computation
of the NNs, while flexibility can be exploited to support long-term
adaptivity. Nonetheless, handcrafting a NN for a specific device,
despite the possibility of leading to an optimal solution, takes
time and experience, and that’s why frameworks for hardware
accelerators are being developed. This work-in-progress study
focuses on exploring the possibility of combining the toolchain
proposed by Ratto et al. [1], which has the distinctive ability
to favor adaptivity, with Approximate Computing (AC). The
goal will be to allow lightweight adaptable NN inference on
FPGAs at the edge. Before that, the work presents a detailed
review of established frameworks that adopt a similar streaming
architecture for future comparison.

Index Terms—Cyber-Physical Systems, Convolutional Neural
Networks, Approximate Computing, FPGAs

I. INTRODUCTION

Cyber-Physical System (CPS) integrate “computation with
physical processes whose behavior is defined by both the
computational (digital and other forms) and the physical parts
of the system”1. They are characterized by a considerable
information exchange with the environment and by dynamic
and reactive behaviors with respect to environmental changes.
In modern systems, CPS or not, decisions making can be
brought directly at the edge on small embedded platforms
exploiting the capabilities of the NNs. This calls for real-time,
low-energy execution, which can be achieved by leveraging
different resources on the same platforms, making heteroge-
neous computing fundamental.

Field Programmable Gate Arrays (FPGAs) devices can
guarantee hardware acceleration, execution flexibility, and
energy efficiency, as well as heterogeneity, and that is why
this type of device is a valuable option for NNs inference

1https://csrc.nist.gov/glossary/term/cyber physical systems

at the edge [17]. Indeed, their integration on heterogenous
Multi-Processor System on Chip (MPSoCs) opened up a wide
range of possibilities exploiting the FPGA potentials along
with the CPU capabilities of managing control flow and
communication.

While many solutions exist to deploy AI models on these
platforms, they often lack full support for advanced features,
such as flexibility. This paper focuses on putting the basis to
achieve future runtime adaptivity, which is key in our opinion
for addressing the dynamic and reactive nature of CPS. De-
signing and deploying reconfigurable accelerators with these
functionalities still needs to be investigated, requiring an in-
depth knowledge of the underlying hardware and hand-tailored
solutions. This belief is at the basis of this study that, starting
from a state-of-the-art framework [1], intends to ultimately
seek automated strategies to deploy lightweight, flexible, and
adaptive NN accelerators for CPS, achieving different Pareto
optimal working points that could be merged into an adaptive
accelerator and exploited at runtime to serve variable and
evolvable applications.

II. BACKGROUND

Several software libraries and frameworks have been de-
veloped to facilitate the development and high-performance
execution of CNNs. Tools such as Caffe2, CoreML3, PyTorch4,
Theano5 and TensorFlow6 aim to increase the productivity
of CNN developers by providing high-level APIs to sim-
plifying data pipeline development. Such environments are
currently flanked High Level Synthesis (HLS) that are used
to generate FPGA-based hardware designs from a high level
of abstraction, to fasten porting of complex algorithms at
the edge. Examples of HLS environments are AMD’s Vitis
HLS, Intel FPGA OpenCL SDK, Maxeler’s MaxCompiler [9],
and LegUp [7]. They employ commonly used programming

2https://caffe.berkeleyvision.org/
3https://developer.apple.com/documentation/coreml
4https://pytorch.org/
5https://github.com/Theano
6https://www.tensorflow.org/

ar
X

iv
:2

30
9.

13
32

1v
1 

 [
cs

.A
R

] 
 2

3 
Se

p 
20

23



languages such as C, C++, OpenCL, and Java, to fill the
gap between software-defined applications and their hardware
implementation.

To execute NN at the edge, three main types of architectures
can be found in literature [2]: the Single Computational Engine
architecture, based on a single computation engine, typically
in the form of a systolic array of processing elements or
a matrix multiplication unit, that executes the CNN layers
sequentially [11]; Vector Processor architecture, with instruc-
tions specific for accelerating operations related to convolu-
tions [13]; the Streaming architecture consists of one distinct
hardware block for each layer of the target CNN, where each
block is optimized separately [3], [4]. In our studies, we focus
mainly on the latter.

A. Streaming Architectures

In our previous work [1], the dataflow model was the
best-suited one to support runtime adaptivity and enhancing
parallelism. The resulting hardware is a streaming architecture
that uses on-chip memory, guaranteeing low-latency and low-
energy computing. Solutions that exploit a similar streaming
architecture are FINN [4], an experimental framework from
AMD Research Labs based on Theano; HLS4ML [3], an
open-source software designed to facilitate the deployment of
machine learning models on FPGAs, targeting low-latency and
low-power edge applications.

These two solutions are described in Sections II-A1 and
II-A2 respectively, and their performance is compared in
Table I.

1) FINN: FINN is a framework for building scalable and
fast NN, with a focus on the support of Quantized Neural
Network (QNN) inference on FPGAs. A given model, trained
through Brevitas, is compiled by the FINN compiler, pro-
ducing a synthesizable C++ description of a heterogeneous
streaming architecture. All QNN parameters are kept stored
in the on-chip memory, which greatly reduces the power
consumed and simplifies the design. The computing engines
communicate via the on-chip data stream. Avoiding the “one-
size-fits-all”, an ad-hoc topology is built for the network.
The resulting accelerator is deployed on the target board
using the AMD Pynq framework. Two works adopting the
FINN framework have been analyzed and their results are
summarized in Table I.

2) HLS4ML: The main operation of the HLS4ML library
is to translate the model of the network into an HLS Project.
The focus in [6] was centered on reducing the computational
complexity and resource usage on a fully connected network
for MNIST dataset classification: the data is fed to a multi-
layer perceptron with an input layer of 784 nodes, three hidden
layers with 128 nodes each, and an output layer with 10 nodes.
The work exploits the potential of Pruning and Quantization-
Aware Training to drastically reduce the model size with
limited impact on its accuracy.

To the best of our knowledge, neither FINN nor HLS4ML,
despite targeting FPGA-based streaming architecture and sup-
porting AC features such as pruning and quantization, ever

proposed a reconfigurable solution for runtime adaptive envi-
ronments.

B. Approximate Computing

AC has been established as a new design paradigm for
energy-efficient circuits, exploiting the inherent ability of a
large number of applications to produce results of acceptable
quality, despite some approximations in their computations.
Leveraging this property, AC approximates the hardware ex-
ecution of the error-resilient computations in a manner that
favors performance and energy. Moreover, NNs have demon-
strated strong resilience to errors and can take great advantage
of AC [12]. In particular, hardware NN approximation can be
classified into three wide categories: Computation Reduction,
Approximate Arithmetic Units, and Precision Scaling [8].

a) Computational Reduction: The Computation Reduc-
tion approximation category aims at systematically avoiding,
at the hardware level, the execution of some computations,
significantly decreasing the executed workload. An example
of this is pruning: biases, weights, or entire neurons can be
evicted to lighten the workload [15].

b) Approximate Units: With Approximate Units, it is
improved the energy consumption and latency of DNN ac-
celerators by employing approximate circuits that replace
more accurate units, like the Multiply-and-Accumulate (MAC)
one [16].

c) Precision Scaling: The most used Precision Scaling
practice is quantization: quantized hardware implementations
feature reduced bit-width dataflow and arithmetic units attain-
ing very high energy, latency, and bandwidth gains compared
to 32-bit floating-point implementations. Rather than executing
all the required mathematical operations with ordinary 32-
bit or 16-bit floating point, quantization allows to exploit
smaller integer operations instead [14]. For this purpose, AMD
provides an arbitrary precision data types library for use in
Vivado HLS designs, which allows the specification of any
number of bits for data types beyond what the standard C++
data types provide. The library also supports customizable
fixed-point data types [10].

III. PROPOSED DESIGN FLOW

The main innovation of the design flow proposed in [1] is
the possibility of supporting runtime adaptivity in the hardware
accelerator through reconfiguration.

A. Tools

Different tools are utilized along the design flow:
• the ONNXParser7, a Python application intended to parse

the ONNX models and automatically create the code for
a target device. It is composed of a Reader and many
Writers, one for each target;

• The Vivado HLS tool8, which synthesizes a C or C++
function into RTL code for implementation on AMD

7https://gitlab.com/aloha.eu/onnxparser
8https://www.AMD.com/support/documentation-navigation/design-

hubs/dh0012-vivado-high-level-synthesis-hub.html



TABLE I: Performance overview of FINN and HLS4ML under different testing set-ups.

Framework Dataset FC CONV Datatype Target LUTS DSP Latency Throughput Power Accuracy
[#] [#] [# bits] board [#] [#] [us] [FPS] [W] [%]

FINN [5] CIFAR-10* 2 6 2 Zynq7000 46253 - 283 21.9k 15.3 80.1
FINN [5] SVHN* 2 6 2 Zynq7000 46253 - 283 21.9k 15.3 94.3
FINN [4] CIFAR-10 2 6 2 UltraScale 392947 - 671 12k <41 88.3
HLS4ML [6] SVHN 3 3 7 UltraScale+ 38795 72 1035 - - 95
HLS4ML [3] MNIST 3 0 16 Ultrascale+ 366494 11 200 - - 96
* The two datasets are cropped to have the same image size.

FPGAs. The resulting hardware can be optimized and
customized through the insertion of directives in the code;

• The Multi-Dataflow Composer (MDC)9 is an open-source
tool that can offer optional Coarse-Grained reconfigura-
bility support for hardware acceleration. It takes as input
the applications specified as dataflow, together with the
library of the HDL files of the actors. These dataflows are
then combined, and the resulting multi-dataflow topology
is filled with the actors taken from the HDL library.

B. Design Flow

The proposed flow, displayed in Figure 1, starts from the
ONNX representation of the NN and produces a streaming
accelerator that accelerates the input model. This file is given
as input to the ONNX Parser: initially, the Reader reads
the ONNX file and produces an intermediate format with a
list of objects that describes layers and connections of the
ONNX model. Then, the selected Writer creates the target-
dependent files. When the target is the HLS flow, it is possible
to customize the data precision used to represent weights
and activations. The HLS Writer produces C++ files that
implement the layers, and the TCL scripts to automate the
synthesis by Vivado HLS. The C++ description of the layers
is based on a template architecture: for the CONV layer, the
core of the CNN, the template is composed of a Line Buffer
actor that stores the input stream to provide data reuse; the
Convolutional actor, whose function is to execute the actual
computation; and the Weight and Bias actors that store the
kernel parameters needed for the convolution. The resulting
template is depicted in Figure 2. Each actor is developed
to be customizable with the hyperparameter, e.g. input and
kernel size, extracted from the ONNX model. The HDL library
produced by Vivado HLS is given as input to the Multi-
Dataflow Composer, together with the XDF file that describes
the topology of the network and the CAL files that identify the
different actors. These latter are generated by the HLS Writer.
Finally, the HDL file of the complete dataflow is automatically
generated. Optionally, the MDC Co-processor generator can be
used to deploy the accelerator using the Vivado design suite.
The Co-processor generator delivers the necessary scripts to
wrap the accelerator and connect it to a complete processor-
coprocessor system. Along with the hardware system, the
drivers to call the coprocessor from the SDK application are
made available.

9https://mdc-suite.github.io/

In the work of Ratto et al. presented in [1] the flow was
semi-integrated and, as part of this preliminary study, the
entire generation process from the ONNX file down to the
accelerator deployment is fully automated.

ONNX model

ONNX parser
HLS Writer

Vivado HLS

HDL library

MDC

Network 
topology (.xml)

Layers 
interface (.cal)

HDL 
accelerator

TCL Scripts

Syntheziable
C++ layers

C Writer

Syntheziable
C++ layers

Fig. 1: ONNX-to-Hardware design flow for the generation of
adaptive neural-network accelerators on FPGAs. The manual
steps needed in [1] (grey lines) have been fully automated with
the newly engineered HLS Writer.

LINE
BUFFER

CONV

FIFOWEIGHT

BIAS

input output

FIFO

FIFOFIFO

Fig. 2: Representation of the streaming-based template archi-
tecture for a convolutional layer.

IV. PRELIMINARY RESULTS AND FUTURE DIRECTION

To assess the re-engineered flow described in Section III-B,
a wide exploration targeting the MNIST classifier has been



TABLE II: Results of exploration with mixed precision data on an accelerator made of 2 convolutional blocks (consisting of a
convolutional layer, max pooling, batch normalization, and ReLU activation layers) followed by 1 fully connected layer. The
accelerator classifies samples from the MNIST dataset. The model is quantized using post-training quantization. In the Datatype
column, Dx-Wy denotes that x bits are used to represent activations and y bits are used to represent parameters in fixed-point
precision. The reported results target a Zynq7000, comprising a “xc7z020-1csg484ces” chip, and have been retrieved through
post-synthesis simulations.

Datatype Zero-weights LUT FF DSP BRAM Latency Throughput Power Energy Accuracy
[%] [%] [%] [%] [%] [us] [FPS] [mW] [uJ] [%]

D32-W32 0.0 29.6 24.5 29.5 15.4 1530 88K 28.6 43.7 98
D16-W16 0.0 23.4 20.2 52.7 15.4 1510 89K 25.3 38.3 98
D8-W16 0.8 9.1 5.6 15.5 13.2 510 296K 20.1 10.2 76
D16-W8 15.0 8.5 0.6 15.5 13.2 510 296K 19.5 9.9 98
D16-W4 55.3 7.7 4.3 15.5 4.3 510 296K 17.5 8.9 97
D16-W2 85.7 7.7 4.3 15.5 4.3 1140 117K 15.0 17.1 68

carried out, as described in Table II. The intent was also to
show the impact of quantization on both model accuracy and
hardware performance, which is generally in line with the
expectations that AC can offer, as discussed in Section II-B.
It can be noticed that accuracy is not as affected by reducing
parameter precision as it is by reducing activations precision.
Moreover, reduced parameter precision leads to a reduced
memory footprint (BRAM column) and a high percentage of
zero weights. This latter can be exploited to combine quanti-
zation with pruning, which skips multiplications by zero. To
have a fair comparison with state-of-the-art solutions presented
in Table I, onboard-running experiments that consider also
memory accesses are needed. However, we can see that the
preliminary results show competitive performance in terms
of utilized resources and latency/throughput. A broader com-
parison against state-of-the-art, based on significant onboard
measurements and targeting more complex datasets, will be
carried out in the future. Nonetheless, it is worth recalling
that state-of-the-art approaches are not conceived to support
runtime adaptivity, which is motivating our research instead.

Indeed, our future work intends to explore mixed preci-
sion in adaptive NN accelerators. To have available a fully
automated flow, with reconfiguration support capabilities, was
a key preliminary step to save the manual effort in the
accelerator definition and exploration. The analysis carried out
so far on non-reconfigurable accelerators shows that promising
trade-offs are present, e.g. trading off accuracy for reduced
energy consumption. The ultimate goal will be the efficient
runtime management of the system that implies, as a first
step, the combination of the different working points over a
reconfigurable substrate. This latter can certainly be achieved
by leveraging on the whole set of functionality offered by the
MDC tool to design and operate reconfigurable and evolvable
NN accelerators for CPS, including the one presented in this
study. Resulting accelerators will be able to switch config-
uration at runtime to adapt to the desired goal, e.g. when a
limited energy budget is left a reduction in energy consumption
is worth the cost of some accuracy loss.

One of the challenges we expect to face in this research’s
future steps is the limited onboard memory, which could
constrain us to the execution of relatively small models (e.g.

TinyML), especially when runtime switching among algo-
rithms/configurations is required. The adoption of a reconfig-
urable approach, capable of sharing weights among configu-
rations, should help us tackle that issue limiting the impact
on the memory footprint of having more than one network
available. This may limit the advantages in terms of accuracy
achievable with Quantization Aware Training [18]. However,
the preliminary results with Post Training Quantization show
a limited drop in accuracy even with 4-bit weights.

ACKOWLEDGMENTS

The authors would like to thank Stefano Esposito for his
contribution to this work during his Master’s thesis.

REFERENCES

[1] Ratto, Francesco, et al. ”An Automated Design Flow for Adaptive Neural
Network Hardware Accelerators.” Journal of Signal Processing Systems
(2023): 1-23.

[2] Venieris, Stylianos, et al. ”Toolflows for mapping convolutional neural
networks on FPGAs: A survey and future directions.” ACM Computing
Surveys (CSUR) 51.3 (2018): 1-39.

[3] Aarrestad, Thea, et al. ”Fast convolutional neural networks on FPGAs
with hls4ml.” Machine Learning: Science and Technology 2.4 (2021):
045015.

[4] Fraser, Nicholas J., et al. ”Scaling binarized neural networks on recon-
figurable logic.” Proceedings of the 8th Workshop and 6th Workshop
on Parallel Programming and Run-Time Management Techniques for
Many-core Architectures and Design Tools and Architectures for Mul-
ticore Embedded Computing Platforms. 2017.

[5] Umuroglu, Yaman, et al. ”Finn: A framework for fast, scalable bina-
rized neural network inference.” Proceedings of the 2017 ACM/SIGDA
international symposium on field-programmable gate arrays. 2017.

[6] Ngadiuba, Jennifer, et al. ”Compressing deep neural networks on FPGAs
to binary and ternary precision with hls4ml.” Machine Learning: Science
and Technology 2.1 (2020): 015001.

[7] Canis, Andrew, et al. ”LegUp: An open-source high-level synthesis tool
for FPGA-based processor/accelerator systems.” ACM Transactions on
Embedded Computing Systems (TECS) 13.2 (2013): 1-27.

[8] Armeniakos, Giorgos, et al. ”Hardware approximate techniques for deep
neural network accelerators: A survey.” ACM Computing Surveys 55.4
(2022): 1-36.

[9] Summers, Sioni, et al. ”Using MaxCompiler for the high level synthesis
of trigger algorithms.” Journal of Instrumentation 12.02 (2017): C02015.

[10] https://jiafulow.github.io/blog/2020/08/02/hls-arbitrary-precision-data-
types

[11] Guan, Yijin, et al. ”FP-DNN: An automated framework for map-
ping deep neural networks onto FPGAs with RTL-HLS hybrid tem-
plates.” 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 2017.



[12] Mittal, Sparsh. ”A survey of techniques for approximate computing.”
ACM Computing Surveys (CSUR) 48.4 (2016): 1-33.

[13] C. Farabet, et al. An FPGA-based processor for convolutional networks.
In Proc. IEEE FPL, pages 32–37. IEEE, 2009.

[14] Jungwook, Choi, et al. 2019. Accurate and Efficient 2-bit Quantized
Neural Networks. In Proc. of Machine Learning and Systems, A.
Talwalkar, V. Smith, and M. Zaharia (Eds.), Vol. 1. 348–359.

[15] Song Han, et al. 2016. EIE: Efficient Inference Engine on Compressed
Deep Neural Network. In Proceedings of the 43rd International Sympo-

sium on Computer Architecture. 243–254.
[16] Bhardwaj, Kartikeya, et al. ”Power-and area-efficient approximate wal-

lace tree multiplier for error-resilient systems.” Fifteenth international
symposium on quality electronic design. IEEE, 2014.

[17] Guo, Kaiyuan, et al. ”[DL] A survey of FPGA-based neural network in-
ference accelerators.” ACM Transactions on Reconfigurable Technology
and Systems (TRETS) 12.1 (2019): 1-26.

[18] Gholami, Amir, et al. ”A survey of quantization methods for efficient
neural network inference.”arXiv preprint arXiv:2103.13630” (2021).

http://arxiv.org/abs/2103.13630

	Introduction
	BACKGROUND
	Streaming Architectures
	FINN
	HLS4ML

	Approximate Computing

	Proposed design flow
	Tools
	Design Flow

	Preliminary results and future direction
	References

