
International Journal on Information Technologies & Security, № 2 (vol. 16), 2024 15

EFFICIENT REAL TIME ZYNQ 7000 FPGA DEPLOYMENT
OF OPTIMIZED YOLOV2 DEEP LEANING MODEL FOR

TARGET DETECTION, BASED ON HDL CODER
METHODOLOGY

Jihane Ben Slimane *

Department of Computer Sciences, Faculty of Computing and Information
Technology, Northern Border University, Rafha,

Saudi Arabia

* Corresponding Author, e-mail: jehan.saleh@nbu.edu.sa

Abstract: Field Programmable Gate Arrays (FPGAs) have garnered significant
attention in the development and enhancement of target identification algorithms
that employ YOLOv2 models and FPGAs, owing to their adaptability and user-
friendliness. The Simulink HDL compiler was utilized to design, simulate, and
implement our proposed design. In an effort to rectify this, this paper presents a
comprehensive programming and design proposal. The implementation of the
YOLOv2 algorithm for real-time vehicle detection on the Xilinx® Zynq-7000
System-on-a-chip is proposed in this work. Real-time testing of the synthesised
hardware revealed that it can process Full HD video at a rate of 16 frames per
second. On the Xilinx Zynq-7000 SOC, the estimated dynamic power consumption
is less than 90 mW. When comparing the results of the proposed work to those of
other simulations, it is observed that resource utilization is enhanced by around 204
k (75%) LUT, 305 (12%) DSP, and 224 k (41%) flip-flops at 200 MHz.

Key words: FPGA accelerator, YOLOv2 accelerator, High level synthesis, HDL
coder, Vehicle detection.

1. INTRODUCTION
Target detection is a widely researched topic in the field of computer vision, with

practical implications in numerous industries, including intelligent surveillance,
industrial inspection, and aerial photography [1]. On the contrary to traditional
algorithms [2], deep learning methodologies demonstrate enhanced accuracy and
robustness in the detection of targets amidst complex scenarios [3]. When applied to
visible and Synthetic Aperture Radar (SAR) images, deep learning detection algorithms
have proven to be more accurate and robust than conventional algorithms when detecting
targets [4]. The architecture of multithreaded and distributed software processing of
graphical data [5], is proposed for improvement of system operation efficiency in real
time [6]. Examples of such algorithms include You Only Look Once (YOLO) and Faster
Region Convolutional Neural Networks (Faster R-CNN) [7].

International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 16

Two often referenced tools in this area are Simulink Hardware Description
Language (HDL) Coder [8] and Xilinx High-Level Synthesis (HLS) [9]. Due to its
capacity to compare with built-in standard algorithms and its thorough functional
verification [10], the latter is ideal for the creation of big computer vision systems [11].
Therefore, the HDL coder allows for the functional testing of several image processing
methods and fast synthesis of many more, including custom filtering, colorspace
conversion, picture statistics gathering, and many more. But there isn't currently any
visible support for image segmentation tasks in the toolbox version [12].

CNN-based object identification in real time is unattainable on FPGA systems due
to their constrained hardware resources, including diminished memory capacity and
weakened CPU performance [13]. CNN accelerators have been suggested by several
academics at different design stages, including architecture, transistor, application, and
system, with the aim of enhancing performance and decreasing power consumption in
situations where hardware and power resources are constrained [14]. A system-level
FPGA accelerator and a CNN accelerator that can adapt to architectures of varying sizes
have been suggested in recent studies.

The structure of the paper is as follows. A description of high-level synthesis
utilizing the HDL compiler is presented in Section 2. In Section 3, the Architecture for
YOLOv2 is outlined. In Section 4, a comprehensive account of the design methodology
for vehicle detection utilizing YOLOv2 is presented. This includes an in-depth analysis
of the hardware development and design methodologies utilized in the proposed design.
In Section 5, the Simulation results, Synthesis results, and their outcomes are elaborated.
In Section 6, the paper is ultimately concluded.

2. HIGH-LEVEL SYNTHESIS BASED ON HDL CODER
Improving the delivery of complex systems, including video and image processing

systems, is the goal of model-based design, which entails the systematic use of models
throughout the development process (figure 1) [14]. While delineating design behaviours
at high abstraction levels, HLS is swiftly gathering traction among designers in search
of a method to guarantee continuous verification throughout the design cycle [15].
Illustrative software for HLS comprises Vivado HLS [16] and MATLAB HDL Coder
[17]. Moreover, an extensive array of open-source alternatives can be found. These tools
are commonly employed by digital architects and designers to devise and construct
algorithms that encompass a wide range of domains, including communications, neural
networks, image processing, and deep learning [18]. The implementation of HLS tools
can result in a seven to tenfold escalation in code complexity. These tools enable the
execution of high-abstraction modelling methods, including transaction-level modelling,
and enable verification teams to employ behavioural intellectual property throughout
various initiatives [19]. Moreover, processors comprise an overpowering majority of
contemporary semiconductor systems [20]. To incorporate custom circuitry,
microprocessors, memory, and video processing devices (DSPs) into a single device,
supplementary software or firmware must be implemented during the design phase.
Architectural and design professionals can assess an extensive range of implementation
and algorithmic alternatives using a shared functional specification and an automated

International Journal on Information Technologies & Security, № 2 (vol. 16), 2024 17

HLS process, with the aim of identifying compromises in power, area, and performance.
Consequently, advancements in register transfer level (the RTL) synthesis methods have
enabled the widespread adoption of HLS technologies in industrial environments.
Additionally, several HLS tools have been commercially marketed by renowned
Electronic Designs Automation (EDA) providers [21]. By incorporating subsequent
tools and employing behavioural hardware description language (HDL) code, the FPGA
functions as an example of a device that facilitates the development of RTL
implementations [22].

Figure 1: Embedded System for FPGA image processing

For the proposed model-based design presented in figure 2 of executing the whole

code on the FPGA inside the framework of a coherent subsystem, the user first defines
the algorithms in a standalone Simulink model. When the platform-specific HDL code
is ready, the HDL Coder tool employs the Xilinx Vivado development tools to silently
synthesis it for the FPGA [20].

Fig. 2. High Level Synthesis Flow Based on HDL coder.

Furthermore, the processor may operate independently during programming thanks
to an interface model provided by HDL Coder. Instead of using the FPGA subsystem,
the relevant AXI interfaces are used in this paradigm for data transmission from and to
the FPGA [21]. This paradigm dictates the use of the Embedded Coder tool, which
generates the processor code 1. The system may be monitored and controlled in real-
time thanks to this feature.

International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 18

3. YOLOV2 ARCHITECTURE
Among the most significant vehicle detection algorithms presented by the

architecture in figure 3, YOLO was created by Redmon et al. The main focus of this
research is the YOLOv2 network's hardware implementation, which provides better
detection accuracy than the tiny YOLO. Cloud deployments of YOLOv2 are rather
prevalent. Running on an Internet of Things (IoT) peripheral device requires additional
hardware design methodologies due to the device's constrained power consumption and
resource availability [13]. Based on the YOLOv2 network study, most layers (except the
routing layer) exhibit serial processing. Just by specifying a preset address, the routing
layer may be initiated. The minimum requirements for an accelerator are the following
operations: data retrieval from memory, data processing, and data writing back to
memory. Using loop tiling, the convolution loop R, C, M, N is tiled to Tr, Tc, Tm, and
Tn [5]. In light of the substantial volume of input and output data, this method is
consistently implemented in order to minimize memory access times and reuse data.
The overall architecture of the accelerator is shown in figure 3:

Figure 3: YOLOv2 Architecture

The effective FPGA bandwidth increases in tandem with the duration of the bursts,
eventually reaching a plateau beyond a specific threshold [15]. The row-major data
architecture in DRAM is typically rendered inaccessible as a result of the data tiling
method. By aligning the kernel weights for an entire tile into a contiguous block, the
number of memory accesses can be reduced while the utilization of external memory
bandwidth is optimized [3].

By implementing input and output parallelism, the convolutional layer accelerates
processing in a manner comparable to that described in [16]. Input parallelism (Tn
parallelism) and output parallelism (Tm parallelism) can be attained in convolutional
calculations through the construction of a multitude of parallel multiplication units and
add trees. Simultaneously, the multiplication units of Tm*Tn are calculated. The pipeline
produces the partial sums subsequent to the addition of every tree with a depth of Log2
(Tn).

International Journal on Information Technologies & Security, № 2 (vol. 16), 2024 19

4. DESIGN METHODOLOGY OF VEHICLE DETECTION BASED ON
YOLOV2

The present investigation employed video frames with colour dimensions of 240 ×
320 x 3 to construct a cascaded model for YOLOv2 detection of vehicle in MATLAB as
presented in figure 4. Eight bits were used to represent each hue. The input frames were
serialized to a stream of pixels, and each pixel was supplied to the design as an input
during each clock cycle. This is in contrast with the HDL implementation, which makes
use of frames instead of pixels. By implementing a Simulink library block, the YOLOv2
object detection system was additionally assessed. Following this, a comparison was
made between the results obtained from the hardware implementation and the input
images used by the Simulink library block [24].

The minimum and maximum values of input and output and intermediate nodes
were meticulously documented throughout the simulation period of 100 seconds, which
aligns with the duration of the video transmission. Subsequent simulation runs added to
this database of lowest and maximum values until every conceivable visual signal input
was taken into account. Then, within the given range, the inputs, outputs, and
intermediate node values were used to determine the signal widths. The revised
constraints were subsequently applied to all data nodes, as well as the main outputs and
inputs of the HLS tool [25], in order to generate the RTL.

..

Figure 4. Vehicle detection Design based on YOLOv2

After that, the FPGA was loaded with the optimized RTL for programming

purposes. The MATLAB software was utilized to perform a frame format conversion of
the pixel-based FPGA output. The desired result was attained through the process of
superimposing a delineated image onto the initial one. There are primarily three parts to
a YOLO v2 car detecting program presented in figure 4. The supplied picture frame is
processed by the first module, preprocessing, which also does image normalization and
resizing. Module 2 involves feeding the pre-processed data into the YOLO v2 car
detection network, which itself consists of a detection network and a feature extraction
network. Thirdly, the input picture is superimposed with the postprocessed bounding
box that was determined by finding the strongest bounding boxes from the network
output. The following block diagram shows the example's implementation: the first two
modules are loaded into the FPGA, and the postprocessing is carried out in MATLAB.

International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 20

The output frame of the FPGA's HDL implementation, the input frame, and the
output frame of the MATLAB model are all illustrated in Figure 4. The figure illustrates
that the input picture source, the MATLAB-Simulink behavioural model, and the FPGA
HDL model all operated autonomously and processed unique frames from the input
video stream.

Back-annotations were applied to the HLS model utilizing the optimal datatype and
data widths selected in RTL. The datatypes that have been back annotated for a model
intermediate step (gradient computation) are illustrated in Figure 4. In the highlighted
case, the result was 36 bits; it was composed of two signed fixed-point values, each
containing 18 bits. The minimum breadth allowed in the worst-case data width model
was 32 bits.

5. MODELING RESULTS AND DISCUSSION

5.1. Simulink HDL coder modelling
The stimulus-aware bit widths MATLAB HDL version 2022 coder was utilized to

generate the RTL code for the HLS model (Figure 5). After being executed on the Xilinx
ZedBoard, the RTL code was synthesized through the utilization of the Vivado 2020.2
software.

Figure 5. Simulink Top level model for YOLO v2 DUT-Preprocess

The illustration depicts the YOLOv2PreprocessTestbench.slx model at its highest
level. The necessary workspace variables for the model are configured in the InitFcn
callback via the helperSLYOLOv2PreprocessSetup.m script. The input frame is chosen
by the Select Image subsystem from the Input Images block. The input image frame from
the Select Image block is converted to a pixel stream and pixel-control bus by a Frame
to Pixels block. The Pack subsystem generates uint32 data by concatenating the R, G,
and B components of the pixel stream with the five control signals of the pixel control
bus. By passing the compressed data through the YOLO v2 Preprocess DUT (figure 6),
it is resized and normalized. The DDR is then updated with the pre-processed data via
the handshaking signals transmitted by the deep learning IP core. The Deep Learning
HDL Processing System block is utilized to simulate the DDR memory and the deep
learning processor IP core. Additionally, the model incorporates a Verify Output

International Journal on Information Technologies & Security, № 2 (vol. 16), 2024 21

subsystem that records the necessary signals to verify the pre-processed data as it is
written to memory via the preprocessDUTVerify.m script.

Figure 6. Simulink model for YOLO v2 DUT-Preprocess

Subsystems (figure 7) for unpacking, preprocessing (resizing and normalization),
and handshaking logic are included in the YOLO v2 Preprocess DUT. The packed input
is returned to the pixel stream and pixel control bus by the Unpack subsystem.

Figure 7. Simulink model for preprocessing

The input pixel stream is resized and rescaled within the YOLO v2 Preprocess

Algorithm subsystem in accordance with the needs of the deep learning network. After
being passed to the DL Handshake Logic Ext Mem subsystem, this pre-processed frame
is written into the PL DDR. This example simulates two AXI4 Master interfaces, one
for writing the pre-processed frame to the DDR memory and the other for reading and
writing the deep learning IP Core registers.

The subsystem of the YOLO v2 Preprocess Algorithm consists of operations for
resizing and normalization. The pixel stream is forwarded to the Resize subsystem so
that it can be resized to the required dimensions by the deep learning network. Assemble
the input image and network input dimensions utilizing the
assisterSLYOLOv2PreprocessSetup.m script. The Normalization subsystem receives
the resized input in order to rescale the pixel values to the range [0, 1]. In the cited source
[XX], the resizing and normalization algorithms utilized in this instance are detailed.

International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 22

5.2. Simulations results
On a non-synthesisable testbed, the generated VHDL RTL code was imitated using

Vivado xSim. The operational simulation outcomes of the Vivado xSim simulator are
illustrated in Figure 8. As shown in the figure, the pixel output of the proposed method
is indistinguishable from the reference pixel values. Furthermore, it was ascertained that
they corresponded with the results of the high-level MATLAB simulation for the optimal
bit-width model. This was demonstrated by contrasting the output images of the two
pathways with the identical input image. By employing a double precision model based
on MATLAB, this study determined the quantization error caused by choosing narrower
"optimal" signal widths. This was accomplished utilizing the "FPGA in the loop" co-
simulation function of MathWorks' HDL Verifier [20]. Less than 1% is the Root Mean
Square (RMS) value of the quantization error.

Figure 8. YOLOv2 Architecture simulation results

5.3. FPGA implementation and Synthesis results
Opti The proposed YOLOv2 design was developed utilizing various bit-width data

types, as detailed in Section 3. For simulation, XSim was employed, as specified in
Section 5.2.

Figure 9: Vivado Design for proposed Yolov2 architecture

Target of a Vivado 2020.2 synthesized version of the exact Verilog design was the
Xilinx ZedBoard. The results obtained from the synthesis and implementation of the
proposed design are presented in Table 1. In addition, high-level synthesis tools provide
access to an abundance of additional optimization strategies, such as pipelining and
resource coordination. While these can be employed to improve the previously

International Journal on Information Technologies & Security, № 2 (vol. 16), 2024 23

mentioned results, optimizing them is beyond the scope of this study. Figure 9 present a
vivado project for the proposed vehicle detection design.

Table 1. Proposed YOLOv2 implementation results

Resource Utilization Resource Utilization
LUT 204395(75%) IO 52(15%)
LUTRAM 26211(18%) BUFG 21(5%)
FF 224939(41%) MMCM 2(50%)
BRAM 565 (61%) PLL 1(13%)
DSP 305(12%) FREQUENCY 200MHZ

Vivado 2020.2 was used to synthesize both the suggested IP core for vehicle

identification and the whole HW-SW co-design. The core was built using the yolov2
algorithm. Table 1 replicates the findings of the synthesis. The overall resource
utilization, as well as that of various layer types on the FPGA, is detailed in Table 1. In
contrast, the 191 convolutional layer, max-pooling layer, and scale layer do not occupy
substantial amounts of resources. It offers several crucial benefits, such as the ability to
expedite time to market by simplifying the design process. In addition to the convenience
of testing and verification. Many applications have used the possibility of converting not
just MATLAB scripts but also Simulink models into HDL code.

6. CONCLUSION
This paper presents a fully-fledged technique for prototyping vehicle detection

based on Yolov2 using Zynq-based boards. The methodology is based on
Matlab/Simulink and the tools HDL Coder and Embedded Coder. An novel HLS design
methodology was proposed to implement the suggested design for vehicle detection
based on YOLOv2 model. The using of the model-based design based on HDL coder
can reduce Time of prototyping by 60 %. We used Xilinx's Vivado xSim simulator to
validate the RTL design's functionality. Following the implementation of the model-
based design process. Consequently, this method may be seriously explored for use in
FPGA applications that need real-time image processing. The method was tested using
the Xilinx Zedboard and the MATLAB HDL coder flow. The area utilization was for
design 1, 189 slice registers, 2303 slice LUTs (lookup tables), 204 k (75%) LUT,
305(12%) DSP blocks and 224 k (41%) flip-flops at 200 MHz. The next future work in
this paper is to include optimization methodologies from well-known synthesis tool
suppliers like MathWorks, Xilinx, Mentor, and Cadence into the suggested
implementation approach. The goal is to increase the speed, surface area, and power
consumption. In addition, there are intentions to broaden this inquiry to include ASIC
designs in the future.

LIST OF ABBREVIATIONS
YOLO: You Only Look Once
FPGA: Field Programmable Gate Array
VHDL: Very High Description language
MBD: Model Based Design

RTL: Register Transfer-Register
DDR: Double Date Rete
DUT: Data Under Test

International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 24

ACKNOWLEDGEMENT
The authors extend their appreciation to the Deanship of Scientific Research at

Northern Border University, Arar, KSA for funding this research work through the
project number “NBU-FFR-2024-2099-01”.

REFERENCES
[1]. Diwan, Tausif, G. Anirudh, and Jitendra V. Tembhurne. Object detection using

YOLO: Challenges, architectural successors, datasets, and applications. Multimedia
Tools and Applications, vol.82, no.6, 2023, pp.9243-9275.
https://doi.org/10.1007/s11042-022-13644-y

[2]. Sirisha, U., Praveen, S.P., Srinivasu, P.N. et al. Statistical analysis of design aspects
of various YOLO-based deep learning models for object detection. International Journal
of Computational Intelligent l Systems, vol.16, art.no.126, 2023.
https://doi.org/10.1007/s44196-023-00302-w

[3]. Sun B, Wang X, Oad A, Pervez A, Dong F. Automatic ship object detection model
based on YOLOv4 with transformer mechanism in remote sensing images. Applied
Science, vol.13, no.4, 2023, art.2488. https://doi.org/10.3390/app13042488.

[4]. Qiu Z, Bai H, Chen T. Special vehicle detection from UAV perspective via YOLO-
GNS based deep learning network. Drones. 2023; vol.7, no.2, p.117.
https://doi.org/10.3390/drones7020117

[5]. Z. Wang, K. Xu, S. Wu, L. Liu, L. Liu and D. Wang, Sparse-YOLO:
Hardware/Software co-design of an FPGA accelerator for YOLOv2. IEEE Access, vol.
8, 2020, pp. 116569-116585. doi: 10.1109/ACCESS.2020.3004198.

[6]. O. Ja. Kravets, I. A. Aksenov, I. V. Atlasov, P. A. Rahman, Yu. V. Redkin, O. Yu.
Frantsisko, L. M. Bozhko. Implementation and evaluation of the effectiveness of dynamic
object detection tools for multithreaded and distributed processing of graphical data.
International Journal on Information Technologies and Security, vol.15, no.1, 2023, pp.
49-58. https://doi.org/10.59035/CMXQ2840

[7]. Al-batat R, Angelopoulou A, Premkumar S, Hemanth J, Kapetanios E. An end-to-
end automated license plate recognition system using YOLO based vehicle and license
plate detection with vehicle classification. Sensors, vol.22, no. 23, 2022, p.9477.
https://doi.org/10.3390/s22239477.

[8]. Li Y, Wang J, Huang J, Li Y. Research on deep learning automatic vehicle
recognition algorithm based on RES-YOLO model. Sensors. vol.22, no.10, 2022, p.783.
https://doi.org/10.3390/s22103783

[9]. Rani, Esther. LittleYOLO-SPP: A delicate real-time vehicle detection algorithm.
Optik, vol.225, 2021, 165818.

[10]. S. Zhang, J. Cao, Q. Zhang, Q. Zhang, Y. Zhang and Y. Wang, "An FPGA-based
reconfigurable CNN accelerator for YOLO. 2020 IEEE 3rd International Conference on
Electronics Technology (ICET), Chengdu, China, 2020, pp. 74-78, doi:
10.1109/ICET49382.2020.9119500.

https://doi.org/10.59035/CMXQ2840
https://doi.org/10.3390/s22239477

International Journal on Information Technologies & Security, № 2 (vol. 16), 2024 25

[11]. Babu, P., Parthasarathy, E. Reconfigurable FPGA architectures: A survey and
applications. Journal of the Institution Engineers (India). Series B, 102, 2021, pp.143–
156 (2021). https://doi.org/10.1007/s40031-020-00508-y.

[12]. Babu, P., Parthasarathy, E. Hardware acceleration for object detection using YOLOv4
algorithm on Xilinx Zynq platform. Journal of Real-Time Image Processing, vol.19,
2020, pp.931–940. https://doi.org/10.1007/s11554-022-01234-y

[13]. Z. Li and J. Wang. An improved algorithm for deep learning YOLO network based
on Xilinx ZYNQ FPGA. 2020 International Conference on Culture-oriented Science &
Technology (ICCST), Beijing, China, 2020, pp. 447-451, doi:
10.1109/ICCST50977.2020.00092.

[14]. Badawi A, Bilal M. High-Level Synthesis of Online K-Means Clustering Hardware
for a Real-Time Image Processing Pipeline. Journal of Imaging. 2019; 5(3):38.
https://doi.org/10.3390/jimaging5030038

[15]. A. Shawahna, S. M. Sait, A. El-Maleh. FPGA-based accelerators of deep learning
networks for learning and classification: A review. IEEE Access, vol. 7, 2019, pp. 7823-
7859. doi: 10.1109/ACCESS.2018.2890150.

[16]. Yang X, Zhuang C, Feng W, Yang Z, Wang Q. FPGA implementation of a deep
learning acceleration core architecture for image target detection. Applied Sciences.
vol.13, no.7, 2023, p.4144. https://doi.org/10.3390/app13074144

[17]. J. Pandey, A. R. Asati, M. V. Shenoy and P. Sikka. Verification of hardware resource
utilization through high level synthesis for FPGA implementation. 2023 4th IEEE Global
Conference for Advancement in Technology (GCAT), Bangalore, India, 2023, pp. 1-6,
doi: 10.1109/GCAT59970.2023.10353312

[18]. Ayachi, R., Said, Y. & Ben Abdelali, A. Optimizing neural networks for efficient
FPGA implementation: A survey. Archives of Computational Methods in Engineering,
vol.28, no.7, 2021, pp.4537–4547). https://doi.org/10.1007/s11831-021-09530-9

[19]. Ahmed Alhomoud, Real time FPGA implementation of a high speed for video
encryption and decryption system with high level synthesis tools. International Journal
of Advanced Computer Science and Applications (IJACSA), vol.15, no.1, 2024.
http://dx.doi.org/10.14569/IJACSA.2024.0150172

[20]. T. Saidani, R. Ghodhbani, Hardware acceleration of video edge detection with hight
level synthesis on the Xilinx Zynq platform. Engineering Technology and Applied
Science Research, vol. 12, no. 1, Feb. 2022, pp. 8007–8012, Feb. 2022 (Visited on 20-
02-2024).

[21]. M. Versen, S. Kipfelsberger, F. Soekmen. Model-based reference design projects
with MathWorks' HDL workflow advisor for custom-specific Electronics with the
Zedboard. ANALOG 2016;15. ITG/GMM-Symposium, Bremen, Germany, 2016, pp. 1-4.
(Visited on 08.02.2024).

[22]. Babu, Praveenkumar, Eswaran Parthasarathy. Hardware acceleration of image and
video processing on Xilinx zynq platform. Intelligent Automation & Soft Computing,
vol.30, no.3, 2021 (Visited on 20-02-2024)

https://dx.doi.org/10.14569/IJACSA.2024.0150172

International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 26

[23]. Kayed, S., Elsayed, G. An optimizing technique for using MATLAB HDL coder.
Bulletin of the National Research Centre, vol.47, no.1, 2023, p.94.
https://doi.org/10.1186/s42269-023-01066-1

[24]. Sankar, Deepa, et al. Rapid prototyping of predictive direct current control in a low-
cost fpga using hdl coder. International Journal of Power Energy Systems, vol.43, no.10
(2023), pp.1-9. https://doi.org/10.2316/J.2023.203-0437

[25]. Ghada Elsayed; Somaya Ismail Kayed. A comparative study between MATLAB
HDL coder and VHDL for FPGAs design and implementation. Journal of International
Society for Science and Engineering, vol.4, no.4, 2022, pp.92-98. doi:
10.21608/jisse.2022.136645.1056.

Information about the authors:
Dr. Jihane Ben Slimane is currently, an Assistant Professor in the Department of Computer
Sciences, Faculty of Computing and Information Technology, Northern Border University,
Rafha, Kingdom of Saudi Arabia. Her areas of expertise and research interests include Artificial
Intelligence, Machine Learning, Neural Networks, Fault Diagnosis, and Cybersecurity.

Manuscript received on 17 March 2024

https://doi.org/10.1186/s42269-023-01066-1
https://doi.org/10.2316/J.2023.203-0437

	REFERENCES
	Information about the authors:

