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Abstract: Field Programmable Gate Arrays (FPGAs) have garnered significant 
attention in the development and enhancement of target identification algorithms 
that employ YOLOv2 models and FPGAs, owing to their adaptability and user-
friendliness. The Simulink HDL compiler was utilized to design, simulate, and 
implement our proposed design. In an effort to rectify this, this paper presents a 
comprehensive programming and design proposal. The implementation of the 
YOLOv2 algorithm for real-time vehicle detection on the Xilinx® Zynq-7000 
System-on-a-chip is proposed in this work. Real-time testing of the synthesised 
hardware revealed that it can process Full HD video at a rate of 16 frames per 
second. On the Xilinx Zynq-7000 SOC, the estimated dynamic power consumption 
is less than 90 mW. When comparing the results of the proposed work to those of 
other simulations, it is observed that resource utilization is enhanced by around 204 
k (75%) LUT, 305 (12%) DSP, and 224 k (41%) flip-flops at 200 MHz.  

Key words: FPGA accelerator, YOLOv2 accelerator, High level synthesis, HDL 
coder, Vehicle detection. 

1. INTRODUCTION 
Target detection is a widely researched topic in the field of computer vision, with 

practical implications in numerous industries, including intelligent surveillance, 
industrial inspection, and aerial photography [1]. On the contrary to traditional 
algorithms [2], deep learning methodologies demonstrate enhanced accuracy and 
robustness in the detection of targets amidst complex scenarios [3]. When applied to 
visible and Synthetic Aperture Radar (SAR) images, deep learning detection algorithms 
have proven to be more accurate and robust than conventional algorithms when detecting 
targets [4]. The architecture of multithreaded and distributed software processing of 
graphical data [5], is proposed for improvement of system operation efficiency in real 
time [6]. Examples of such algorithms include You Only Look Once (YOLO) and Faster 
Region Convolutional Neural Networks (Faster R-CNN) [7]. 



International Journal on Information Technologies & Security, № 2, (vol. 16), 2024 16 

Two often referenced tools in this area are Simulink Hardware Description 
Language (HDL) Coder [8] and Xilinx High-Level Synthesis (HLS) [9]. Due to its 
capacity to compare with built-in standard algorithms and its thorough functional 
verification [10], the latter is ideal for the creation of big computer vision systems [11]. 
Therefore, the HDL coder allows for the functional testing of several image processing 
methods and fast synthesis of many more, including custom filtering, colorspace 
conversion, picture statistics gathering, and many more. But there isn't currently any 
visible support for image segmentation tasks in the toolbox version [12]. 

CNN-based object identification in real time is unattainable on FPGA systems due 
to their constrained hardware resources, including diminished memory capacity and 
weakened CPU performance [13]. CNN accelerators have been suggested by several 
academics at different design stages, including architecture, transistor, application, and 
system, with the aim of enhancing performance and decreasing power consumption in 
situations where hardware and power resources are constrained [14]. A system-level 
FPGA accelerator and a CNN accelerator that can adapt to architectures of varying sizes 
have been suggested in recent studies.  

The structure of the paper is as follows. A description of high-level synthesis 
utilizing the HDL compiler is presented in Section 2. In Section 3, the Architecture for 
YOLOv2 is outlined. In Section 4, a comprehensive account of the design methodology 
for vehicle detection utilizing YOLOv2 is presented. This includes an in-depth analysis 
of the hardware development and design methodologies utilized in the proposed design. 
In Section 5, the Simulation results, Synthesis results, and their outcomes are elaborated. 
In Section 6, the paper is ultimately concluded.  

2. HIGH-LEVEL SYNTHESIS BASED ON HDL CODER 
Improving the delivery of complex systems, including video and image processing 

systems, is the goal of model-based design, which entails the systematic use of models 
throughout the development process (figure 1) [14]. While delineating design behaviours 
at high abstraction levels, HLS is swiftly gathering traction among designers in search 
of a method to guarantee continuous verification throughout the design cycle [15]. 
Illustrative software for HLS comprises Vivado HLS [16] and MATLAB HDL Coder 
[17]. Moreover, an extensive array of open-source alternatives can be found. These tools 
are commonly employed by digital architects and designers to devise and construct 
algorithms that encompass a wide range of domains, including communications, neural 
networks, image processing, and deep learning [18]. The implementation of HLS tools 
can result in a seven to tenfold escalation in code complexity. These tools enable the 
execution of high-abstraction modelling methods, including transaction-level modelling, 
and enable verification teams to employ behavioural intellectual property throughout 
various initiatives [19]. Moreover, processors comprise an overpowering majority of 
contemporary semiconductor systems [20]. To incorporate custom circuitry, 
microprocessors, memory, and video processing devices (DSPs) into a single device, 
supplementary software or firmware must be implemented during the design phase. 
Architectural and design professionals can assess an extensive range of implementation 
and algorithmic alternatives using a shared functional specification and an automated 
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HLS process, with the aim of identifying compromises in power, area, and performance. 
Consequently, advancements in register transfer level (the RTL) synthesis methods have 
enabled the widespread adoption of HLS technologies in industrial environments. 
Additionally, several HLS tools have been commercially marketed by renowned 
Electronic Designs Automation (EDA) providers [21]. By incorporating subsequent 
tools and employing behavioural hardware description language (HDL) code, the FPGA 
functions as an example of a device that facilitates the development of RTL 
implementations [22].  

 
Figure 1: Embedded System for FPGA image processing 

 
For the proposed model-based design presented in figure 2 of executing the whole 

code on the FPGA inside the framework of a coherent subsystem, the user first defines 
the algorithms in a standalone Simulink model. When the platform-specific HDL code 
is ready, the HDL Coder tool employs the Xilinx Vivado development tools to silently 
synthesis it for the FPGA [20]. 

 

 
Fig. 2. High Level Synthesis Flow Based on HDL coder. 

Furthermore, the processor may operate independently during programming thanks 
to an interface model provided by HDL Coder. Instead of using the FPGA subsystem, 
the relevant AXI interfaces are used in this paradigm for data transmission from and to 
the FPGA [21]. This paradigm dictates the use of the Embedded Coder tool, which 
generates the processor code 1. The system may be monitored and controlled in real-
time thanks to this feature. 
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3. YOLOV2 ARCHITECTURE  
Among the most significant vehicle detection algorithms presented by the 

architecture in figure 3, YOLO was created by Redmon et al. The main focus of this 
research is the YOLOv2 network's hardware implementation, which provides better 
detection accuracy than the tiny YOLO. Cloud deployments of YOLOv2 are rather 
prevalent. Running on an Internet of Things (IoT) peripheral device requires additional 
hardware design methodologies due to the device's constrained power consumption and 
resource availability [13]. Based on the YOLOv2 network study, most layers (except the 
routing layer) exhibit serial processing. Just by specifying a preset address, the routing 
layer may be initiated. The minimum requirements for an accelerator are the following 
operations: data retrieval from memory, data processing, and data writing back to 
memory. Using loop tiling, the convolution loop R, C, M, N is tiled to Tr, Tc, Tm, and 
Tn [5]. In light of the substantial volume of input and output data, this method is 
consistently implemented in order to minimize memory access times and reuse data. 
The overall architecture of the accelerator is shown in figure 3: 
 

 
Figure 3: YOLOv2 Architecture 

The effective FPGA bandwidth increases in tandem with the duration of the bursts, 
eventually reaching a plateau beyond a specific threshold [15]. The row-major data 
architecture in DRAM is typically rendered inaccessible as a result of the data tiling 
method. By aligning the kernel weights for an entire tile into a contiguous block, the 
number of memory accesses can be reduced while the utilization of external memory 
bandwidth is optimized [3]. 

By implementing input and output parallelism, the convolutional layer accelerates 
processing in a manner comparable to that described in [16]. Input parallelism (Tn 
parallelism) and output parallelism (Tm parallelism) can be attained in convolutional 
calculations through the construction of a multitude of parallel multiplication units and 
add trees. Simultaneously, the multiplication units of Tm*Tn are calculated. The pipeline 
produces the partial sums subsequent to the addition of every tree with a depth of Log2 
(Tn). 
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4.  DESIGN METHODOLOGY OF VEHICLE DETECTION BASED ON 
YOLOV2 

The present investigation employed video frames with colour dimensions of 240 × 
320 x 3 to construct a cascaded model for YOLOv2 detection of vehicle in MATLAB as 
presented in figure 4. Eight bits were used to represent each hue. The input frames were 
serialized to a stream of pixels, and each pixel was supplied to the design as an input 
during each clock cycle. This is in contrast with the HDL implementation, which makes 
use of frames instead of pixels. By implementing a Simulink library block, the YOLOv2 
object detection system was additionally assessed. Following this, a comparison was 
made between the results obtained from the hardware implementation and the input 
images used by the Simulink library block [24]. 

The minimum and maximum values of input and output and intermediate nodes 
were meticulously documented throughout the simulation period of 100 seconds, which 
aligns with the duration of the video transmission. Subsequent simulation runs added to 
this database of lowest and maximum values until every conceivable visual signal input 
was taken into account. Then, within the given range, the inputs, outputs, and 
intermediate node values were used to determine the signal widths. The revised 
constraints were subsequently applied to all data nodes, as well as the main outputs and 
inputs of the HLS tool [25], in order to generate the RTL.  

.. 

 
Figure 4. Vehicle detection Design based on YOLOv2 

 
After that, the FPGA was loaded with the optimized RTL for programming 

purposes. The MATLAB software was utilized to perform a frame format conversion of 
the pixel-based FPGA output. The desired result was attained through the process of 
superimposing a delineated image onto the initial one. There are primarily three parts to 
a YOLO v2 car detecting program presented in figure 4. The supplied picture frame is 
processed by the first module, preprocessing, which also does image normalization and 
resizing. Module 2 involves feeding the pre-processed data into the YOLO v2 car 
detection network, which itself consists of a detection network and a feature extraction 
network. Thirdly, the input picture is superimposed with the postprocessed bounding 
box that was determined by finding the strongest bounding boxes from the network 
output. The following block diagram shows the example's implementation: the first two 
modules are loaded into the FPGA, and the postprocessing is carried out in MATLAB. 
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The output frame of the FPGA's HDL implementation, the input frame, and the 
output frame of the MATLAB model are all illustrated in Figure 4. The figure illustrates 
that the input picture source, the MATLAB-Simulink behavioural model, and the FPGA 
HDL model all operated autonomously and processed unique frames from the input 
video stream. 

Back-annotations were applied to the HLS model utilizing the optimal datatype and 
data widths selected in RTL. The datatypes that have been back annotated for a model 
intermediate step (gradient computation) are illustrated in Figure 4. In the highlighted 
case, the result was 36 bits; it was composed of two signed fixed-point values, each 
containing 18 bits. The minimum breadth allowed in the worst-case data width model 
was 32 bits. 

5. MODELING RESULTS AND DISCUSSION 

5.1. Simulink HDL coder modelling 
The stimulus-aware bit widths MATLAB HDL version 2022 coder was utilized to 

generate the RTL code for the HLS model (Figure 5). After being executed on the Xilinx 
ZedBoard, the RTL code was synthesized through the utilization of the Vivado 2020.2 
software. 

 
Figure 5. Simulink Top level model for YOLO v2 DUT-Preprocess 

The illustration depicts the YOLOv2PreprocessTestbench.slx model at its highest 
level. The necessary workspace variables for the model are configured in the InitFcn 
callback via the helperSLYOLOv2PreprocessSetup.m script. The input frame is chosen 
by the Select Image subsystem from the Input Images block. The input image frame from 
the Select Image block is converted to a pixel stream and pixel-control bus by a Frame 
to Pixels block. The Pack subsystem generates uint32 data by concatenating the R, G, 
and B components of the pixel stream with the five control signals of the pixel control 
bus. By passing the compressed data through the YOLO v2 Preprocess DUT (figure 6), 
it is resized and normalized. The DDR is then updated with the pre-processed data via 
the handshaking signals transmitted by the deep learning IP core. The Deep Learning 
HDL Processing System block is utilized to simulate the DDR memory and the deep 
learning processor IP core. Additionally, the model incorporates a Verify Output 
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subsystem that records the necessary signals to verify the pre-processed data as it is 
written to memory via the preprocessDUTVerify.m script. 

 

 
Figure 6. Simulink model for YOLO v2 DUT-Preprocess  

Subsystems (figure 7) for unpacking, preprocessing (resizing and normalization), 
and handshaking logic are included in the YOLO v2 Preprocess DUT. The packed input 
is returned to the pixel stream and pixel control bus by the Unpack subsystem.  

 
Figure 7. Simulink model for preprocessing 

 
The input pixel stream is resized and rescaled within the YOLO v2 Preprocess 

Algorithm subsystem in accordance with the needs of the deep learning network. After 
being passed to the DL Handshake Logic Ext Mem subsystem, this pre-processed frame 
is written into the PL DDR. This example simulates two AXI4 Master interfaces, one 
for writing the pre-processed frame to the DDR memory and the other for reading and 
writing the deep learning IP Core registers. 

The subsystem of the YOLO v2 Preprocess Algorithm consists of operations for 
resizing and normalization. The pixel stream is forwarded to the Resize subsystem so 
that it can be resized to the required dimensions by the deep learning network. Assemble 
the input image and network input dimensions utilizing the 
assisterSLYOLOv2PreprocessSetup.m script. The Normalization subsystem receives 
the resized input in order to rescale the pixel values to the range [0, 1]. In the cited source 
[XX], the resizing and normalization algorithms utilized in this instance are detailed. 
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5.2. Simulations results 
On a non-synthesisable testbed, the generated VHDL RTL code was imitated using 

Vivado xSim. The operational simulation outcomes of the Vivado xSim simulator are 
illustrated in Figure 8. As shown in the figure, the pixel output of the proposed method 
is indistinguishable from the reference pixel values. Furthermore, it was ascertained that 
they corresponded with the results of the high-level MATLAB simulation for the optimal 
bit-width model. This was demonstrated by contrasting the output images of the two 
pathways with the identical input image. By employing a double precision model based 
on MATLAB, this study determined the quantization error caused by choosing narrower 
"optimal" signal widths. This was accomplished utilizing the "FPGA in the loop" co-
simulation function of MathWorks' HDL Verifier [20]. Less than 1% is the Root Mean 
Square (RMS) value of the quantization error. 

 

 
Figure 8. YOLOv2 Architecture simulation results 

5.3.  FPGA implementation and Synthesis results 
Opti The proposed YOLOv2 design was developed utilizing various bit-width data 

types, as detailed in Section 3. For simulation, XSim was employed, as specified in 
Section 5.2.  

 
Figure 9: Vivado Design for proposed Yolov2 architecture 

Target of a Vivado 2020.2 synthesized version of the exact Verilog design was the 
Xilinx ZedBoard. The results obtained from the synthesis and implementation of the 
proposed design are presented in Table 1. In addition, high-level synthesis tools provide 
access to an abundance of additional optimization strategies, such as pipelining and 
resource coordination. While these can be employed to improve the previously 
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mentioned results, optimizing them is beyond the scope of this study. Figure 9 present a 
vivado project for the proposed vehicle detection design.  

 
Table 1. Proposed YOLOv2 implementation results 

Resource Utilization Resource Utilization 
LUT 204395(75%) IO 52(15%) 
LUTRAM 26211(18%) BUFG 21(5%) 
FF 224939(41%) MMCM 2(50%) 
BRAM 565 (61%) PLL 1(13%) 
DSP 305(12%) FREQUENCY 200MHZ 

 
Vivado 2020.2 was used to synthesize both the suggested IP core for vehicle 

identification and the whole HW-SW co-design. The core was built using the yolov2 
algorithm. Table 1 replicates the findings of the synthesis. The overall resource 
utilization, as well as that of various layer types on the FPGA, is detailed in Table 1. In 
contrast, the 191 convolutional layer, max-pooling layer, and scale layer do not occupy 
substantial amounts of resources. It offers several crucial benefits, such as the ability to 
expedite time to market by simplifying the design process. In addition to the convenience 
of testing and verification. Many applications have used the possibility of converting not 
just MATLAB scripts but also Simulink models into HDL code. 

6.  CONCLUSION 
This paper presents a fully-fledged technique for prototyping vehicle detection 

based on Yolov2 using Zynq-based boards. The methodology is based on 
Matlab/Simulink and the tools HDL Coder and Embedded Coder. An novel HLS design 
methodology was proposed to implement the suggested design for vehicle detection 
based on YOLOv2 model. The using of the model-based design based on HDL coder 
can reduce Time of prototyping by 60 %. We used Xilinx's Vivado xSim simulator to 
validate the RTL design's functionality. Following the implementation of the model-
based design process. Consequently, this method may be seriously explored for use in 
FPGA applications that need real-time image processing. The method was tested using 
the Xilinx Zedboard and the MATLAB HDL coder flow. The area utilization was for 
design 1, 189 slice registers, 2303 slice LUTs (lookup tables), 204 k (75%) LUT, 
305(12%) DSP blocks and 224 k (41%) flip-flops at 200 MHz. The next future work in 
this paper is to include optimization methodologies from well-known synthesis tool 
suppliers like MathWorks, Xilinx, Mentor, and Cadence into the suggested 
implementation approach. The goal is to increase the speed, surface area, and power 
consumption. In addition, there are intentions to broaden this inquiry to include ASIC 
designs in the future.  

LIST OF ABBREVIATIONS 
YOLO: You Only Look Once 
FPGA:  Field Programmable Gate Array 
VHDL: Very High Description language 
MBD:    Model Based Design 

RTL:     Register Transfer-Register 
DDR:    Double Date Rete 
DUT:     Data Under Test 
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